

Team Number: 1

Client: Grant Johnson - Ames Laboratory

Adviser(s): Gelli Ravikumar - Iowa State University

Team Members: Noah Frederiksen - Project Manager

Owen Snyder - Frontend/UI Developer

Josh Edwards - Backend API Developer

Thai Pham - Blockchain Lead

Dylan McCormick - Lab Integration Lead

Emileo Xiao - Testing/Evaluation Lead

Team Email: sddec21-01@iastate.edu

Team Website: N/A

Applying and Evaluating
Blockchain in Energy Delivery

Systems

DESIGN DOCUMENT

mailto:sddec21-01@iastate.edu

SDDEC21-01 1

Development Standards & Practices Used

● Agile Software Development

● Test-driven Development

● Continuous Integration and Development

● Peer Reviews

Summary of Requirements

 List all requirements as bullet points in brief.

● Blockchain Network

○ Network that shall consist of at least five peer nodes

● Blockchain Evaluation

○ Develop software and use cases to measure data loss from

transactions

○ Develop software and use cases to measure rate and speed of

transactions

● API

○ Manage environment identities to map requesters to Fabric

identities within our permissioned blockchain

○ Set up CRUD - create, read, update, delete, query all, and query by

parameters requests for dealing with lab data

● Smart Contract

○ Change smart contracts to enable create, read, update, delete, query

all, and query by parameters for PMU data from the lab

environment

● User Interface

○ Display transaction data to user and show system performance

measurements

○ Allow users to interact with data through queries in order to view

important data such as start-end times, unique fabric identities, or

threshold value searches

Executive Summary

SDDEC21-01 2

○ Update UI to present data in a graphical format, such as a

dashboard that will showcase PMU data from the lab to show status

of devices, device performance, and measurement values from the

data

● Physical Lab Integration

○ Refactor previous project to handle, interpret, and process physical

data streaming from PowerCyber Labs

■ Develop the capability to publish this physical data stream to

the ledger on the blockchain

Applicable Courses from Iowa State University Curriculum

● COM S 309: Software Development Practices

● COM S 319: Construction of User Interfaces

● SE 329: Software Project Management

● SE 339: Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses

● Knowledge of Blockchain technologies
● Knowledge of HyperLedger Fabric

○ Smart Contracts

○ Consensus

○ Permissioned Networks

● Knowledge of HyperLedger Caliper

● Knowledge of Energy Delivery Systems

○ Specifically PowerCyber Labs

SDDEC21-01 3

Table of Contents

1 Introduction 101.1

 55

1.2 55

1.3 66

1.4 Requirements 131.5

 88

1.6 101.7

 102

 112.1 Task Decomposition

 11

2.2 Risks And Risk Management/Mitigation 13

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 13

2.4 Project Timeline/Schedule 14

2.5 Project Tracking Procedures 16

2.6 Personnel Effort Requirements 16

2.7 Other Resource Requirements 17

2.8 Financial Requirements 17

3 Design 17

3.1 Previous Work And Literature 17

3.2 19 18

3.3 193.4 Technology Considerations

21

3.5 Design Analysis 21

3.6 Development Process 22

3.7 234 Testing

 23

4.1 244.2

 244.3

 244.4

 245 Implementation

 24

6 Closing Material 24

6.1 Conclusion 24

6.2 References 24

SDDEC21-01 4

List of figures/tables/symbols/definitions

Figure 1: PowerCyber Real Time Data Flow

SDDEC21-01 5

Figure 2: Use Case Diagram

Figure 3: Caliper Evaluation Diagram

Figure 4: Software Architecture Diagram

Figure 5: Control Flow Diagram

Table 1: Gantt Chart of Work Schedules

Table 2: Personnel Efforts Requirements per Task

1 Introduction

1.1 ACKNOWLEDGEMENT

Our team would like to thank Gelli Ravikumar for advising and providing us with guidance,
PowerCyber Labs for letting us use their resources and explaining how their hardware will
interact with us, and Grant Johnson for giving us the opportunity to work on this project
and partake in his ideas.

1.2 PROBLEM AND PROJECT STATEMENT

1.2.1 Problem Statement

Energy Delivery Systems are deployed in an environment that is geographically distributed

through public internet infrastructure. The integrity of measurements, commands, and

authenticity of control devices performing communication are critical for trusted

operations. Blockchain is a new and growing technology that could be applied to maintain

or improve that operational integrity. It is all digital and provides a link between devices

and processes which are all in the physical domain. Energy Delivery Systems of current and

the future may have use cases that would benefit by taking advantage of a system that has a

distributed and immutable ledger.

1.2.2 Proposed Solution

The purpose of this project is to continue work on a blockchain based Energy Delivery

System solution to solve the problem statement. Blockchain systems are very secure and

attacks against them are difficult to implement, especially so in a permissioned blockchain

environment. It also provides a high level of defense against loss of data, since blockchain is

decentralized and stored across a network. Hyperledger Fabric’s ledger is immutable, so we

can trust that our records will not be altered or tampered with. This project should attempt

to showcase how blockchain functions with actual PowerCyber labs hardware data and

whether blockchain is an effective option for Energy Delivery Systems by setting up such a

system that connects the physical devices with a blockchain network, and testing different

performance metrics, such as transaction rate and data loss, using Caliper.

SDDEC21-01 6

1.3 OPERATIONAL ENVIRONMENT

The operating environment for this project will be on servers that will store the project and
other data associated with it. Barring extreme natural disaster, the servers will not be
exposed to harsh weather and will be properly taken care of. The servers in question will be
Linux-based and exist on a secure network for the use of communication between nodes.

The technical environment involves receiving and maintaining records of data for Energy
Delivery Systems through the use of blockchain technology. There is a focus on using nodes
in a network to reliably track this information and have it available for viewing through an
internet/website based implementation.

1.4 REQUIREMENTS

1.4.1 Functional

Blockchain Evaluation

Caliper will be used for multiple major tests of the system including: latency,

throughput, and data loss.

Blockchain Network

 The Blockchain Network shall consist of at least five nodes.

The Blockchain Network shall have at least one orderer for every organization.

Smart Contract Layer

Smart Contracts shall be functionally responsible for read, update, delete and

query data stored on the ledger.

User access control shall be limited to assigned channels where the users can

employ Smart Contract functionality specified by the channel.

Every Smart Contract shall implement more than one endorsing node.

User Interface

The User Interface shall distribute specified metrics and/or measurements to

authenticated and authorized users. Right now, these include Blockchain System

health and performance metrics (latency, throughput, data loss, etc.) gathered

upon request through Hyperledger Caliper.

The User Interface shall issue authorized user specific operator commands to

modify/process the ledger.

The User Interface shall allow administrators to provide necessary credentials to

access admin privileges such as executing ledger smart contracts.

 Physical Integration

SDDEC21-01 7

A client application using a python socket shall receive the physical device data

stream and publish it to the ledger through the API.

The Opal-RT module shall communicate with the Python application and allow for

modifications on both ends for data formatting.

API

There shall be an API for smart contract functions for PowerCyber data streams

and an API for publishing and querying blockchain evaluation metrics

The API shall proxy the Smart Contract functions to the requests made by the web

application or physical device data streams from PowerCyber.

All calls to the API shall require authentication.

Any calls made to the Blockchain System during downtime shall be provided with

an appropriate error message detailing status of the Blockchain System.

1.4.2 Non-Functional

Blockchain Network

The Blockchain Network shall be implemented in docker containers allowing for

flexibility when running networks on different machine systems.

The Blockchain Network shall be deployed to PowerCyber resources by using a

CI/CD pipeline.

Smart Contract Layer

The Smart Contract Layer shall have automatic testing and deployment for all

controllers.

The Smart Contract Layer controllers and models shall have detailed

documentation that describes functionality and intended use.

User Interface

The User Interface shall reliably display the current status of the blockchain

network.

The User Interface shall be usable and readable to a reasonable degree while

delivering all of the relevant information to the user.

The User Interface shall be developed with commonly used web development

tools.

The User Interface shall be usable even if the Blockchain System is down.

SDDEC21-01 8

API

 API based on an express API library that carries out HTTP requests.

The API shall produce query requests that do not exceed 10 seconds.

The API shall support URL end points that are callable via GET and POST

requests.

Maintainability

There shall be freely and readily available documentation via the project wiki

containing a detailed description of the project should the client have the need to

make modifications.

Deployed components shall be developed in such a way as to be resilient to

changes in concurrent components. In this manner, the component shall still

execute and detect loss of communication or compatibility issues with interfacing

components.

Continuous integration and deployment shall serve to thoroughly test and deploy.

1.5 INTENDED USERS AND USES

The intended use of the Energy Delivery System will be for human users to interact with devices
that are outputting quantifiable data. We will consider both humans and devices to be users with
the blockchain service. We will define several use cases for the users:

1.5.1 Human users will be required to authenticate themselves by entering their login

credentials into the web application.

SDDEC21-01 9

1.5.2 Human users will query metrics and measurements contained within the blockchain

network.

1.5.3 Devices will periodically output updated measurement data. Potentially, the users may

need to make changes to the domain specific data in cases of error with metrics or

measurements.

Figure 1: PowerCyber Real Time Data Flow

 Figure 2: Use Case Diagram

SDDEC21-01 10

Figure 3: Caliper Evaluation Diagram

1.6 ASSUMPTIONS AND LIMITATIONS

1.6.1 Assumptions

- The server hardware and operating system present in the PowerCyber labs will be

made readily available

- Will be provided access to devices within the PowerCyber labs

1.6.2 Limitations

- The project has no budget, therefore we are limited to the PowerCyber resources

- HyperLedger Fabric must be used as the permission-based distributed ledger

framework

- Caliper is going to be used as the Fabric evaluation tool

1.7 EXPECTED END PRODUCT AND DELIVERABLES

1.7.1 - Fully Functional Blockchain System

There shall be a system of Nodes working within virtual machines in the PowerCyber Lab.

Our system will depart from the previous simulated PMU design, and will be converted to

be fully functional with a real datastream from the PowerCyber lab.

SDDEC21-01 11

1.7.2 - Authentication and Powercyber Integration APIs

Our system will operate through 2 APIs. One will host Smart Contract CRUD operations

for data within the system, and the other will be focused on handling incoming data from

PowerCyber and exposing functionality from that system.

1.7.3 - In-Depth Blockchain Evaluation

Our project shall include an emphasis on the evaluation of the Blockchain system via

Hyperledger Caliper, which will help analyze the performance and health of the Network.

1.7.4 - User Interface

The web based user interface will provide multiple pages devoted to displaying different

information about the blockchain system. These shall include system health, performance

data, and querying the ledger through the API.

1.7.5 - Project Documentation

The project will be documented mainly through the senior design website, where all design

documents and API documents will likely be uploaded.

1.7.6 - CI/CD Pipeline Integration

Development of the project and version control will be continuously streamlined
throughout the project term through the integration of a CI/CD pipeline in Git to maintain
cleanliness and functionality within the project.

2 Project Plan

2.1 TASK DECOMPOSITION

2.1.1 Project Manager

The project manager shall be the primary person responsible for maintaining the

organization/logistics of the team and oversee a swift and thorough implementation of all

functional and nonfunctional requirements. The primary duties of the project manager is

included as followed:

- Planning: The project manager, in accordance with team members, shall define the

scope, set deadlines, establish baseline communication with team, client, and

faculty advisor

- Scheduling: Develop and track project deadlines and milestones. Ensure the

project stays on schedule or at least develop an effective deadline delay backup

plan

- Overseer: Encourage and strive for consistent development, testing, and evaluation

stages within the project with active engagement for every stage.

2.1.2 Front End Development

SDDEC21-01 12

The focus of the front end will be handling the web based framework and further

implementing the past team’s UI and enhancing the viewing and monitoring of the data

being displayed to physical devices. Details of data being viewed are as follows:

- Operations: Centered around the health of the system; available PMUs, proper

communication, and status of the system.

- Blockchain Performance: Create metrics to determine standards of performance

metrics relating to the blockchain services and protocols.

- Testing: Run diagnostics to see if the blockchain and smart contracts are working

as intended

2.1.3 Back End Development

The back end developer’s focus will be to essentially be the glue that allows for

communication throughout the system. The API will receive queries from the front end,

and will publish PMU data to the blockchain which comes through a custom python socket

from the Opal-RT in PowerCyber.

- HyperLedger Fabric contracts and consensus are storing data effectively and the

data can be viewed to check for inconsistencies.

- Work with the Caliper developer to receive requested metrics as they are

requested from the front end.

- Currently executes smart contracts on the blockchain upon request from the UI,

will need to

2.1.4 Blockchain Technician

 Focus of the Blockchain Technician is to scale the functionality of local individual nodes

for

 blockchain to a collection of distributed connected nodes that can deploy smart contracts

 within the system. Responsibilities will include the following:

-Working with the Hyperledger Caliper/Testing expert to test the metrics of the

 blockchain (latency, throughput, load balancing, etc.) as well as the global state of

 the blockchain as a whole.

 -Coordinating with the Physical Lab Integration Lead to ensure the data being fed

 into the blockchain network is physically sound as a factor, allowing transparency

 on the integrity of the system.

2.1.5 Hyperledger Caliper/Testing Expert

 Hyperledger Caliper is a tool that is used to monitor the performance of a blockchain

 network. Hyperledger Caliper measures the following:

- Read Latency = Time when response received – submit time
- Read Throughput = Total read operations / total time in seconds

SDDEC21-01 13

- Transaction Latency = (Confirmation time @ network threshold) – submit time

- Transaction Throughput = Total committed transactions / total time in seconds @
#committed nodes

 These four categories are the requirements we will focus on. In addition to using
 Hyperledger Caliper, the Hyperledger Caliper/Testing Expert will help make sure that past
 modules still work as newer modules are being added to the system. This requires unit
 testing or automated testing to help ensure that the communication between the
 blockchain, Hyperledger Caliper, the backend, and the frontend are sending or receiving
 the correct data.

2.1.6 Lab Integration Lead

The main role of the lab integration lead is to be in contact with the PowerCyber Labs team
and resolve questions about the physical systems and how communication with them can
occur. The duties of this role include:

- Understand how data moves around in the labs system
- Be a point of contact for questions concerning integration
- Discuss implications for PowerCyber labs team creating a custom module that we

would interact with and they could continue to design in the future
- Develop the software client application that listens for the data stream and

continuously publishes it to the Blockchain ledger through the API.

The sub-role of the Lab Integration Lead will be to help out other team members using
knowledge about the physical system and to make suggestions and help implement ideas
with those team members, deferring to them for their respective roles but keeping
expectations on track with the PowerCyber labs teams needs.

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Risk: Development team will be losing a team member for the semester of Senior Design

492

Probability: High

Action: The team member was given a non-technical role to ensure continuity of

technical responsibilities into the fall.

Risk: Limited in-person collaboration and access to PowerCyber resources could hinder

progress in dev cycle

Probability: Low

Action: Maintain constant communication with PowerCybers Lab team members

to ensure collaboration efforts are not disrupted and access to resources is

maintained.

Risk: Team’s knowledge level about Blockchain systems and PowerCyber could lead to

flaws in the project

SDDEC21-01 14

Probability: Low-Medium

Action: Mitigate - by keeping in contact with the Faculty supervisor and

continuing research on the domain, the team can successfully avoid the risk.

Consulting experts in the field and utilizing resources pertaining to Blockchain

systems will aid in this.

Risk: Over-Reliance on the previous team’s work and design decisions could lead to

inherent flaws that could not be easily fixed or worked around

Probability: Low-Medium

Action: Mitigate - Thoroughly analyze the previous Blockchain project and

determine what needs to be changed in order to meet the updated requirements.

Frequent consultation of the client and Faculty Advisor will be necessary to

determine past shortcomings and fixes that will solve them.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Successful implementation of smart contracts

○ The task given to the smart contract is successful and reliable

● Communication between nodes in the blockchain network

○ Each node can successfully send and receive a smart contract between each other

● User can monitor the blockchain network through the frontend api

○ Data is displayed to the user in real-time

○ Frontend Application is easy to navigate

○ Caliper is successfully running tests and capturing performance metrics

● User can send commands to modify the blockchain api

○ Commands are successfully sent

○ Commands are successfully received

○ Easy for the user to send commands

○ Data displayed is altered correctly based on the commands

● Finished Integration into PowerCyber Lab

○ the network can work successfully without human intervention

○ long periods of up-time, over a few days

○ Successfully displays data of PowerCyber Lab to the user

SDDEC21-01 15

2.4 PROJECT TIMELINE/SCHEDULE

SDDEC21-01 16

SDDEC21-01 17

Figure 4: project timeline GANTT chart

2.5 PROJECT TRACKING PROCEDURES

Our group will likely use a combination of Discord and Github/Git in order to track our

progress throughout the course and next semester.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Time to Perform Correctly

Congregate Requirements Total Person-Hours: 30

Collect Functional Requirements 10

Collect Non-functional Requirements 20

Familiarize with Resources Total Person-Hours: 65

Introduction to PowerLabs 5

Familiarize with Linux VMs 10

Familiarize with Hyperledger Fabric 20

Familiarize with Calliper 15

Familiarize with React/Javascript 15

Implement Blockchain Total Person-Hours: 25

Understanding previous team’s implementation 15

Further research on implementation to energy
systems

10

Implement the API Total Person-Hours: 50

Create endpoints for easy integration and expansion 15

Create the Smart Contract Layer 30

Create commands to request data 5

Implement the UI Total Person-Hours: 40

Return specified data to the user 15

Use the data to create meaningful metrics 15

Sends commands to the specified nodes 10

SDDEC21-01 18

Testing Total Person-Hours: 45

Stress loading 10

Monitor the performance through Calliper 25

Check information returned to the user 5

Test all commands 15

Integration to PowerCyber Lab Total Person-Hours: 50

Load all software onto PowerCyber Lab’s network 15

Testing all functionality 30

Customization according to the situation 5

Table 2: efforts table

2.7 OTHER RESOURCE REQUIREMENTS

From our faculty advisor, the group will receive VMs with Linux installed that has Docker

containers to simulate nodes. Likewise, the group will be given access to PowerCyber Lab if

necessary. Lastly, the group will have access to real-time data from the lab.

2.8 FINANCIAL REQUIREMENTS

There are no financial requirements for this project.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

- The previous team succeeded in designing a client application and API, however, in order

to add more simplicity, we will need to split them up into a framework of two APIs instead

of one. This will add more clarity and structure by distributing the APIs into two explicit

roles rather than one encompassing API.

- Another aspect the previous team had created was the UI, however, similarly to the API

abstraction there needs to be further development to obtain more functionality and

analysis of the blockchain’s performance. The previous team sufficiently exercised smart

contracts and got the metrics to display, we have the opportunity to change and enhance

that work further. This is where we will come in to enhance the UI and make it easier for

users to evaluate the data being displayed from the blockchain network.

- In addition, the previous team did not have access to PowerCyber Lab because of COVID-

19 so they didn’t have real data on hand. Therefore, they decided to use VMs to simulate

SDDEC21-01 19

PMUs and create a data stream themselves. Through this, the previous team created a

prototype blockchain with their custom data. Currently, we are expanding on their

implementation of the blockchain and integrating it into PowerCyber Lab.

- Furthermore, the previous team adopted custom methodologies and tools for measuring

data throughput/loss which were developed outside the scope of the Blockchain network.

This team will be using formal testing framework tools, Hyperledger Caliper, to gather and

display more relevant metrics.

3.2 DESIGN THINKING

3.2.1 “Define”

- The client defined a need for a Blockchain evaluation tool for secure operational analysis

on PowerCyber devices.

- The client defined HyperLedger fabric as the framework for the Blockchain service

3.2.2 “Ideate”

- We shall develop a more enhanced UI to display the evaluated metrics from the blockchain

network to allow easier testing, troubleshooting and clarity.

- Abstract client application to APIs to further improve the structure of the product.

- Creating integration in terms of physical devices to set up the environment of physical data

collection.

3.3 PROPOSED DESIGN

The design we propose will include the following components: a user interface, two APIs, a

Blockchain Network, and a Blockchain evaluation tool. We will be redeveloping the user

interface from previous work to encompass two views: an operations view and a Blockchain

performance view. We shall define one API for the operations view to expose smart

contract functionality to the operational needs of the PowerCyber devices. We shall define a

second API for the Blockchain performance view that will allow the client to analyze and

monitor the performance of the available Blockchain service.

SDDEC21-01 20

Figure 4: Software Architecture Diagram

API For Operations View

- The API shall execute smart contracts on the data output from the Opal-RT device

in the PowerCyber Labs.

- The API shall decompose, convert, and process packet data from PowerCyber and

format into a smart contract to then be deployed onto the Blockchain

- The API shall fit use case needs in terms of processing speeds from PowerCyber

devices

API for Blockchain Evaluation View

- The API shall interface with the HyperLedger Caliper evaluation tool to route

performance metrics to the frontend UI for display to users.

- The API shall supply the Caliper evaluator with timing data for evaluation and

return.

SDDEC21-01 21

This diagram shows the control flow through the Backend (specifically custom classes, public API

not shown)

Figure 5: Control Flow Diagram

Blockchain Network

- The Blockchain node system shall report ledger updates to the API

- The Blockchain node system shall receive and execute authorized and

authenticated requests to run smart contracts from the API

Smart Contract Layer

- The Smart Contract shall query entries contained in the ledger if the user request

has been authenticated and authorized.

- The Smart Contract shall update entries in the ledger if the user request has been

authenticated and authorized.

User Interface

SDDEC21-01 22

- The user interface shall allow an authenticated and authorized user to submit

requests for device metrics and measurements from the PowerCyber labs.

- The user interface shall allow the client to view analysis and performance of the

current Blockchain service by using Caliper Blockchain evaluation tool.

PowerCyber Devices

- The PowerCyber devices will consistently report metrics and measurement data to

the Blockchain Network.

3.4 TECHNOLOGY CONSIDERATIONS

HyperLedger Fabric will be used for configuring, building, and deploying our blockchain

network, implementing smart contracts, and adding API functionality.

HyperLedger Fabric utilizes YAML configuration files for structuring and setting up the

network. HyperLedger Fabric also uses Docker Composer for defining, creating, and

deploying the containerized nodes to ensure all environment requirements are met.

HyperLedger Fabric works using order nodes that exist as the central communication for

the network. These nodes ensure consistency is maintained with the state of the Ledger.

HyperLedger Fabric has a key value database called CouchDB to deal with transaction logs

and ledgers (NoSQL document store). CouchDB is the default database for HyperLedger

Fabric, therefore the best choice when working with Fabric.

In addition to Fabric, the team will be using HyperLedger Caliper to monitor and test our

blockchain network. As another subset of HyperLedger, Caliper makes it easier to test

Fabric’s smart contracts and API. Caliper gives the team the ability to monitor resource

allocation, transaction latency, transactions per second (TPS), and other performance tests.

Therefore, Caliper is the best software to test the blockchain functionality.

For our frontend design, the team has decided to use React.js as our frontend framework.

React.js gives us many advantages over normal Javascript. React allows the team to create

complicated applications. For the scope of this project, normal Javascript does not give us

the capabilities to build an application that allows the user to monitor, send commands,

and modify the network. React is designed for more complicated applications which will

help facilitate the creation of the web application. Therefore, ReactJS will be our frontend

framework. We also must consider our lab integration technology. There will be a custom

module put together in the Opal-RT that will output PMU data streams. A Python client

application will listen to it and publish to the APIs.

3.5 DESIGN ANALYSIS

As discussed with the Client, Hyperledger Fabric will be a good starting point in
developing the blockchain network. It is likely that the team will continue forward using
this framework, however if more research is done and a tool that is more suited to the
project is discovered, then the design may be changed to incorporate it.

Similarly, the design of the front end UI may be altered in the future, as ReactJS is suitable
for our needs, but is mainly intended for single screen applications, which contradicts our
intended UI design of having multiple pages that show different analytic data about the

SDDEC21-01 23

blockchain system. Perhaps in a future iteration of the design a different library will be
used that will be better for implementing our current design.

3.6 DEVELOPMENT PROCESS

The project will be developed using agile programming practices. Each functional
requirement will be completed in 2-3 week sprints, with continuous testing and updating
of requirements throughout the development cycle. This method will allow the project to
be flexible if any design decisions change or if there are obstacles in development. Daily
development and communication from each member of the team will allow us to
consistently produce quality software that is delivered often

3.7 DESIGN PLAN

After thorough requirement gathering and planning, we will implement the solution that

best coincides with each individual use case (Fig. 2) and architectural diagram (Fig. 4).

We will begin our initial solution by defining two APIs to be used in operational and

Blockchain performance view within the user interface . The first API will be for the

operational view and will output metric and measurement data pertaining to the

PowerCyber devices. We define a second API that will be used in the Blockchain

performance view. This API will process user requests to submit evaluation criteria and will

display the performance data from the Caliper evaluation tool. Both API will require calls

and requests to the API to be authorized and authenticated except for when a user needs

to authenticate login credentials.

The Blockchain network will contain at least five nodes and at least one orderer per

organization to supply sufficient communication with peers. To support Crash Fault

Tolerance the Blockchain system will enforce Raft Ordering Service to confirm ledger

ordering. The global state of the blockchain ledger will be maintained on CouchDB. We

will be using the HyperLedger Fabric cryptographic generation tools that implement self-

signed certificates which eliminates the need for a third-party certificate authority. The

device metric and measurement data from the PowerCyber Labs will be kept and

maintained as a digital object on the Blockchain ledger. This will ensure the data stored on

the ledger is immutable and protected from malicious intent.

While the Blockchain service is running, the Smart Contract Layer will send persistent

ledger updates to the respective API. Updates will include metric and measurement data

which come directly from physical data streams outputted by PowerCyber devices. At least

3 nodes out of a minimum of 5 nodes will need to come to a consensus for ledger updates.

Smart Contract functions will be written in ReactJS that ultimately provides users with the

ability to read, write, query, and delete information stored on the ledger. The Smart

Contracts will need to be installed on at least one peer node and instantiated on at least

three other nodes for endorsement.

The user interface will allow the following functionality: login/logout, request to query

authorized metric and measurement data, evaluate Blockchain performance. The user

interface shall remain active should the API be down at any point in time.

SDDEC21-01 24

4 Testing

4.1 UNIT TESTING

All components of the application will be unit tested to verify consistency and performance
guidelines are met.

● API: Once familiarized with the framework and what is going on in the previous teams
code, we will utilize Postman which allows for automated API testing. We will be testing
UI functionality, as well as HTTP requests made by those connecting to our network to
request information about PowerCyber systems.

● Blockchain Network: Testing in this sector will most closely relate to the analysis that is
being carried out. New chaincode will be launched upon restarting the blockchain
network, and this is where the functionality of the network will be determined and verified
through the use of Hyperledger Caliper.

● Smart Contracts: Smart Contract assertions will be verified through the use of Chai
assertion library, instantiated with the Mocha test framework. This will allow us to verify
that the contracts dealing with the PMU data are doing so properly and alleviate headaches
when it comes to debugging the communication between the hardware and software.

● PowerCyber Hardware: We will confirm connectivity, data content, and data rates. This’ll
be for the communication between the Opal-RT module and a custom client application.

4.2 INTERFACE TESTING

The relevant interfaces in our design were mentioned above, being the User Interface, the

API, the Blockchain Network, Smart Contracts, and the PowerCyber hardware. The

composition of the UI and API will be tested with Postman, which allows for fully

automated API testing. The blockchain side of things will be tested with a Chai/Mocha

combo (default for Hyperledger), while the communication between the blockchain

network and the physical hardware will be taken care of by Hyperledger Caliper.

4.3 ACCEPTANCE TESTING

The client will have the testing suite available to them, as some of the major reasoning

behind this project is research and development, thus a range of tests applicable to a range

of blockchain use cases surrounding energy deployment is important. In terms of

functional requirements, Hyperledger Caliper measures read latency, read throughput,

transaction latency, and transaction throughput. As of now, we are in discussion for

reasonable thresholds for functional requirements and ensure that those are met by using

event triggered testing with the Hyperledger Caliper. The non-functional side of things will

be taken care of by traditional unit testing as mentioned above.

4.4 RESULTS

As of now, we haven’t implemented any testing yet. We are still getting our feet wet with

the technology, and furthering our understanding of blockchain as a whole. We plan to

have a suite of various testing applications reaching through the entirety of the application

which can pinpoint a component and test the correctness of the functions within that

component, or look into a communication route between and verify validity of that

communication through simulated data. This will allow an overall look at the health of the

SDDEC21-01 25

application and although it will not happen overnight and will most certainly have to be

built out and expanded upon over time, will be one of the bigger emphasis of this project.

5 Implementation

The first thing that we will do is adapt the previous teams UI and API to fit our proposed

framework. What has been supplied to us has to be expanded upon to support data

collection from the physical components of PowerCyber. We will most likely utilize the

previous teams data generation code to allow us to immediately begin working with the UI’s

and ensure their correctness before connecting that with the blockchain network, and thus

the PowerCyber components. In parallel with the UI improvements, the blockchain

team/specialist will be implementing smart contracts to match our goals and deploying

them onto the blockchain network. Along with this, they will be looking into a multi

organizational version of the blockchain in which nodes are able to be added/removed

without causing issues to the network as a whole.

6 Closing Material

6.1 CONCLUSION

At this point in time, the team has finished gathering all the functional and non-functional

requirements from the client. Currently, the team is split into different parts to familiarize

with HyperLedger Fabric, HyperLedger Caliper, React, and PowerCyber Lab. When the

team is finished, some of them will use HyperLedger Fabric to create the blockchain

network and smart contracts. Others will monitor and test the performance of the network

as it is being built using Caliper. Lastly, the rest will work on the frontend application

which will let a user monitor and modify the blockchain network. Afterwards, the team

will work on the integration of the different softwares together as one API and start

integrating the API into PowerCyberLabs. This is the best form of action based on the

previous team’s success.

6.2 REFERENCES

Libraries and Frameworks:

CouchDB:

http://docs.couchdb.org/en/stable/

HyperLedger Fabric:

https://hyperledger-fabric.readthedocs.io/en/release-1.4/

HyperLedger Composer (deprecated):

https://hyperledger.github.io/composer/latest/introduction/introduction.html

http://docs.couchdb.org/en/stable/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger.github.io/composer/latest/introduction/introduction.html

SDDEC21-01 26

HyperLedger Caliper:

https://www.hyperledger.org/use/caliper

PowerCyber Labs:

http://powercybersec.ece.iastate.edu/powercyber/welcome.php

React.JS:

https://reactjs.org/docs/getting-started.html

Raft

https://raft.github.io/raft.pdf

https://www.hyperledger.org/use/caliper
http://powercybersec.ece.iastate.edu/powercyber/welcome.php
https://reactjs.org/docs/getting-started.html
https://raft.github.io/raft.pdf

